ノート

ジオポリマーによる廃棄物を利用した路盤材の製造に関する研究

原田 達也*·田島 政弘**

1.目 的

ジオポリマーとは、ケイ素やアルミニウムを主成分とす る非晶質の無機重合体のことである¹⁾. 1930年代からカオ リナイトとアルカリの反応の研究が行われ、1972年に Davidovitsがメタカオリンとアルカリを反応させて無機重 合体を開発した^{1),2)}. この無機重合体を後にジオポリマー と呼称し、以降、多数の研究者によりジオポリマーに関す る研究が活発に行われるようになった^{1),5)}. 日本国内でも 精力的に研究されており、2017年には研究会が設立されて いる⁵⁾.

ジオポリマー化の反応において、アルカリ水溶液と接触 すると金属イオンを容易に放出する珪酸塩鉱物が活性フィ ラーと呼ばれており, 天然物ではカオリナイトの焼成物で あるメタカオリン, 生産工程の副産物ではフライアッシュ が挙げられる²⁾.活性フィラーはアルカリ水溶液を混練す ると不定形のゲルを形成して固化する性質を持つ.この不 定形のゲルは縮重合反応により生成したNa-Si-Al-OHの結 合で構成されており、セメント硬化体のCa-Si-OH結合と比 較すると耐酸性等の耐久性に優れているとされている1). このとき使用されるアルカリ水溶液は、水酸化カリウムや 水酸化ナトリウムの他、珪酸ソーダである水ガラスが反応 性の高さから国内の研究でよく使用されている^{2),5)}.この ように、ジオポリマーはセメントを使用しないため、セメ ント硬化体よりも製造工程中の二酸化炭素の排出量が少な い特長がある1)-5).また、ジオポリマー化の反応は、原料 の主成分がSiであれば固化する可能性があるため、近年で は産業廃棄物や製造工場で発生する副生物の固化に応用さ れており1)-3), さらに、ジオポリマー中に放射性廃棄物を 封入し固化する研究などにも幅広く用いられている²⁾.

他方, 島根県は鋳物の生産地の一つであり, 2018年度は 生産量が約196,000トンとなり日本国内で4番目の生産量 であった⁶⁾. この生産工程において種々の副生物が生じて おり, その中で比較的量が多いものにダストと呼ばれる固 体の粒子状物質がある(以下, CDSTと記す.). CDSTは 砂型の造形, 除去, あるいは砂落とし, 砂の再生, 砂の混 練などの工程で生じる粉じんの集じん・除じんくずである.

**無機材料技術科 **技術第1部長

現在のところ、CDSTは県内の企業がセメントに混ぜて使 用することなどにより処理されている.

ところで,そのセメント関連部材は環境省の公表資料に よると、二酸化炭素の排出量が産業部門で4番目に多い状 況にある⁷⁾. そのため,近年,セメント産業では継続的に 二酸化炭素の排出量の削減の取り組みを行ってきている⁸⁾. そのような状況の中,県内企業の一社が,二酸化炭素の排 出量低減に寄与するためにセメントを使用せず, CDSTを ジオポリマー化の技術で固化させて路盤材を製造する意向 があったことから、ジオポリマーの固化条件の検討を行う ことにした. この県内企業は、副生物であるCDSTを用い た硬化体の作製について,工場の敷地内での養生が可能, 分級は既存の設備で対応可能,加温設備および微粉砕設備 に投資はしない、原料にできるだけ産業廃棄物を利用した い、および硬化体の圧縮強度が30MPa程度必要、との意 向を持っていた. そこで、本研究では鋳造工場で副生する CDSTついて、路盤材としての利用を想定し目標強度を30 MPaとして、原料を微粉砕せず常温でジオポリマー化に よる固化体の作製を試みた.

2.方 法

2.1 原料

県内の鋳造メーカーにおいて砂と粘土を原料とする型を 扱う工程で副生したCDST,県内の火力発電所で副生した フライアッシュ(以下,FAと記す.),および市販の高炉 スラグ微粉末(商品名:エスメント.以下,BFSと記す.) の3種類の粉末を用いた.アルカリ水溶液は水ガラスより も安価な水酸化ナトリウムを用いることとし,市販の25% 水酸化ナトリウム(NaOH)水溶液,およびこの市販の水 溶液を蒸留水で希釈し十分撹拌した後,12時間以上静置し て調製した20%および15%NaOH水溶液を使用した.

2.2 室温固化実験

2.2.1 調合実験

容量100mlのポリプロピレンビーカーに, CDST, FA, BFSの3種類の粉末原料を,合計で50gになるように所定 の割合で秤量し,テフロン棒を用いて十分撹拌した.撹拌 後,振動テーブルで振動させてチクソトロピーを示す程度 までNaOH水溶液を添加し,十分混練した.この混練物を ビーカーに入れ,ラップで覆ったのちにテフロンテープで 封緘した.その後,20℃に設定したインキュベーター(M IR-253,パナソニック)中に静置して15~30日程度養生を 行い,試料の固化状態を確認し調合条件を決定した.その 一覧を表1に示す.

調合名	原	NaOH 水溶液		
HVHJ [] 2]	CDST	FA	BFS	濃度
C95F00B05-25	95	0	5	25%
C50F40B10-25	50	40	10	25%
C30F60B10-25	30	60	10	25%
C10F80B10-25	10	80	10	25%
C10F85B05-25	10	85	5	25%
C10F80B10-20	10	80	10	20%
C10B85F05-20	10	85	5	20%

表1 圧縮試験用試験体の調合条件

CDST:鋳造ダスト,FA:フライアッシュ, BFS:高炉スラグ微粉末

2.2.2 圧縮強度評価実験

2.2.1で決定した条件にて調合した試験体の圧縮強度を測 定した。表1の調合条件に沿って所定量の粉末を電子天秤 で秤量し,ポリ袋中で撹拌した後,ミキサーを用いて撹拌 してからNaOH水溶液を添加して混練した.混練後,振動 テーブルで振動させながら内径 φ50mm,高さ100mmプラ スチック円筒型枠の9本に充填し,ラップで覆いテフロン テーブで封緘してから20℃に設定したインキュベーター中 に静置して養生を行った.ジオポリマーの圧縮強度は養生 期間の経過に比例して高くなることから^{2).9)},固化後の硬 化する期間を考慮し,30,90,180日経過した後に3本ず つ試験体を取り出し圧縮試験を行った.圧縮試験は,円筒 型枠を外してから試験体の上面をサンドペーパーで平坦に なるまで研削し,試験体の寸法を測定した後,直ちに行っ た.さらに試験体の一部についてX線回折測定による構成 鉱物の確認および電子顕微鏡による組織観察も行った.

2.3 評価方法

2.3.1 粒度測定

原料の粒度測定は、レーザ回折/散乱式粒子径分布測定 装置(LA-950,堀場製作所)で行った.溶媒は蒸留水を 用いた.

2.3.2 蛍光X線分析

原料の化学組成の確認は次のとおり行った. CDSTは振動ミル(TI-100,タングステンカーバイド製容器,シー・エム・ティ)を用いて粉砕物とした。この粉砕物とFAおよびBFSを約110℃で12時間以上乾燥し,内径約32mmの塩ビリングに充填し,約250MPaの荷重で加圧し円板状に成型した. これらの円板状試料を波長分散型蛍光X線(X RF-1800,島津製作所)の定性定量分析で分析した.測定条件は,X線管球:Rh,管電圧:40kV,管電流:70mA, 試料分析範囲: ϕ 30mm,走査速度:F,Ti~U 4°/分,Na~Cl,K,Ca 8°/分,ステップ間隔:0.1°/ステップ とした.

2.3.3 X線回折測定

構成鉱物を確認するため、原料粉末および180日養生後 の試験体について、必要に応じてアルミナ乳鉢で粉砕して からX線回折装置(RINT-2500V、リガク)を用いて測定 を行った、測定条件は、X線管球:Cu、管電圧:40kV、 管電流:150mA、単色化方法:モノクロメーター法、発 散スリット:1°,散乱スリット:1°,受光スリット:0.6 mm、走査範囲:3~50°,ステップ間隔:0.2°/step、走 査速度8°/分とした.

2.3.4 圧縮試験

2.2.2で作製試験体について、アンボンドキャッピング用 器具を試験体の上側に取り付け、コンクリート圧縮試験機 (ACTIS-1000、マルイ)を用いて圧縮試験を行った.

2.3.5 電子顕微鏡による観察

固化した試験体の組織を確認するため,180日養生後の 試験体について,2.3.4の圧縮試験後に欠片を分取し,金蒸 着を行ってから走査電子顕微鏡(JSM-IT100LA,日本電 子)で破断面の観察を行った.

2.3.6 溶出試験

2.3.4の圧縮試験終了後の一部の試験体について,環境庁 の告示に従い¹⁰,次のとおり溶出操作を行った.ジョーク ラッシャー(1023-A,吉田製作所)で粗粉砕した後,目 開き2mmのふるいで分級し,2mm以下の粒子を分取し た.この2mm以下の粒子50gと蒸留水500gをポリボトル (材質:ポリエチレン,容量:1L)に入れて,振とう機 (SA300,ヤマト科学)で約200回/分で6時間振とうさせ た.得られた懸濁液を遠心分離機(Model 5922,久保田

表2 原料の定性分析結果

試料名	検出元素
CDST	Si, Al, Fe, Mg, Na, Zn, Ca, K, S, Zr, Mn, Cr, Ti, P, Cl, Ba, Sr, Cu, Ni
FA	Si, Al, Fe, K, Ti, Ca, S, Na, Mg, P, Zr, Mn, Zn, Sr, Cl, Ce, Y, Cu, Cr
BFS	Ca, Si, Al, Mg, S, Ti, K, F, Fe, Mn, Na, Sr, Zr, Cr, Y, P

※Cを除いた半定量値で 0.01mass%以上であった元素について、半定量値の高い元素から順に記載した.

商事)で固液分離を行い、上水を目開き0.22µmのフィル ターでろ過して検液を調製した.標準液は富士フイルム和 光純薬社の試薬を蒸留水で希釈して調製した.検液および 標準液をICP質量分析装置(7700, Agilent)で測定し,標 準液で作成した検量線から検液の濃度を算出した.

結果および考察

3.1 原料性状の確認

各原料の蛍光X線分析による定性分析の結果を表2に示 す.表2には定性定量分析の半定量値が0.01mass%を超え ていた元素を半定量値の高い順に列記した.CDSTおよび FAはSiおよびAlが主構成元素であり,BFSはCa,Siが主 構成元素であった.

図1に各原料の粒度測定結果を示す.CDSTは粒径が数 μmから1mm弱までの幅で分布しており、3種類の固形 原料の中では最も粒径の分布が広かった.また、FAおよ びBFSは10~20μm付近の粒子が多く存在しており、CDS Tは他の原料と比較して大きい粒子が多く存在していた. 粒子の粒径が小さくなると比表面積が大きくなるため、表 面エネルギーが大きくなり溶解しやすくなるとされている ことから¹¹⁰、粒径の観点では図1において大きな粒子が多 いCDSTはアルカリ水溶液への溶解性が低い可能性が高い と考えられた.

図2に各原料のX線回折測定結果を示す.表1の定性元 素を基に,得られた回折パターンとICDDのデータベース の比較により構成鉱物の同定を行ったところ,CDSTは石 英を主成分として,長石類,酸化鉄および雲母で構成され ていると推測された.FAはムライト,石英およびカルサ イトが存在していると同定した.また,2 θ =20~25°付 近にブロードなハローが現れたことから非結晶相が混在し ていると判断した.BFSは明瞭な回折ピークがほとんど見 られず,2 θ =20~35°付近のブロードなハローからおお むね非晶質相であり,さらに2 θ =30°付近にわずかに見 られた回折ピークについて表1に示したとおり,主要構成 元素がCaとSiであること,及びICDDデータベースとの比

図2 原料のX線回折測定結果

較結果によりケイ酸カルシウム化合物であると同定した.

CDSTは、鋳造において使用する砂と粘土が原料の砂型 を再生するなどの工程で発生するものである.この砂型の 原料は天然の珪砂およびベントナイトであり、珪砂は結晶 質の石英が主成分で長石類あるいは雲母を随伴しており、 品質により構成鉱物の割合が異なるが、鋳造の砂型で使用 されるベントナイトは主成分がモンモリロナイトで、石英、 長石類、雲母を随伴しているものであることが多い.この ことから、CDSTの構成鉱物はほぼ原料の砂型から由来し、 鋳造時に砂型の表面に固着した鉄の酸化物が少量混在して いると考えられる.また、2*θ*=20~25°付近にブロード なハローが現れなかったことから非結晶質のものはほとん ど存在せず、概ね結晶質の鉱物で構成されていると判断し た.

3.2 調合実験

先に述べたことよりジオポリマーはアルカリ水溶液中へ の金属イオンの溶出量が少なければ生成し難くなるとも言 える. Crundwell¹²⁾がBrandyらの報告データ^{13),40}を整理し た結果および高柳の実験結果¹⁵⁾において,pH7以上の高p H領域の水溶液に対する結晶質SiO₂の溶解度は非晶質SiO₂ より小さいことが示されている.このことから,主に結晶 質SiO₂で構成されるCDSTはアルカリ水溶液に溶解しにく いと推察される.以上のことより,本研究で用いたCDST はジオポリマー化の反応が進みにくいと判断した.他方, FAは既報^{2),41}でアルカリ水溶液にNaOH水溶液を用いても ジオポリマー化することが確認されている.よって, CDST単独でジオポリマー化の反応が生じ難い場合には, FAと組み合わせることによりジオポリマーを形成し固化 させられることが期待できた.

また,いくつもの既報¹⁶⁾⁻¹⁹において加温養生によりジオ ポリマーを作製しているが,本研究では室温でジオポリマー

⊗:30日では固化せず

図4 20%NaOHを用いた調合実験結果

図5 15%NaOHを用いた調合実験結果

を形成して固化させることを目的としたため,加温養生に 比較すると固化し難いと考えられた.そこで,ジオポリマー の形成において,室温固化での養生期間の短縮を期待し, 例えば李や一宮などの既報に倣い,硬化促進作用のある BFSを用いることとした^{1),5)}.

これらを考慮して行った調合実験の結果を図3~5に示 す.図3に示したとおり25%NaOH水溶液の場合,CDST 100mass%の調合では30日以上養生しても全く固化せず、 目視では反応が生じている様子を確認できなかった.この ことから冒頭で推測したとおり本研究で用いたCDST単体 を常温で固化させることは難しいことが分かった.他方, FAに25%NaOH水溶液を添加して作製した試料は20日程 度で固化した.これらのことから、CDSTにFAを混合し ても30日の養生では固化しない可能性が高いと判断し, BFSを混合した調合で固化する組成を検討することにした. ただし、 李¹がBFSの混合率が高くなると固化体の構造が 変わり、Na-Si-Al-OHのジオポリマーより耐久性が低いCa-Si-Al-OH構造のアルカリ刺激スラグに分類すべきと指摘し ていること、および一宮⁵がFAとBFSで検討を行い、BFS の混合率が10mass%ではジオポリマーの固化反応である 縮重合のみが生じると考えてよいと報告していることから. 本研究ではBFSの混合率を10mass%以下とした.以上を 勘案し、BFSを調合して試験を行ったところ、図3に示し たようにBFSの混合率が5,10mass%のいずれの場合にも, CDSTとの調合では30日程度で固化し、CDSTの調合割合 を60mass%以下とすると15日までに固化する結果となっ た.

20%NaOH水溶液の場合は、図4に示すようにBFSが5 mass%,10mass%のいずれの場合でもCDSTが60mass% 以下の調合で30日までに固化した.15%NaOH水溶液の場 合は図5に示すように、本研究で試みた調合は全て30日で は固化しなかった.CDST20mass%-BFS10mass%の調 合でも30日で固化しなかったため、CDSTの混合率が10 mass%あるいは5mass%とさらに低い調合で30日以内に固 化するものがあるとしても高い強度は発現しない可能性が 高いと判断した.以上のことから、本研究のNaOH水溶液 の濃度範囲において、CDSTを含む調合物はBFSがなけれ ば固化せず、水溶液濃度が高く、かつCDSTの調合割合が 低いほど容易に固化することが確認できた.

3.3 圧縮強度評価実験

3.2の結果を基に,30日程度で固化した調合のうち,ま ずC95F00B05-25の試験体について圧縮強度を評価したと ころ,圧縮強度が1MPa以下であった.脱型後,試験体 表面は固まっていたが,圧縮試験後の試験体内部の破面は 簡単に崩壊する状態であった.このことから,外表面が固 化しても試験体の硬化は進んでいない可能性があることが 分かった.そこで,調合実験の結果のうち,確実に固化し て高い強度が発現すると予想した表1に示す調合の試験体 について圧縮強度を評価したところ,図6および図7に示 すようになり,3種類の試験体が180日の養生後に目標強 度の30MPaを超える結果となった.この結果を整理する

図 6 25%NaOH水溶液を使用した試験体の圧縮強度

図7 20%NaOH水溶液を使用した試験体の圧縮強度

NaOH 水溶液濃度		围入夕	
20 %	25 %	测'口'''	
0	0	C10F80B10-20	
		C10F80B10-25	
	\cap	CODECODIO DE	
		C30F00B10 25	
~	Δ	C10F85B10-20	
		C10F85B10-25	
	NaOH 水 20 % 〇 一 ×	NaOH 水溶液濃度 20 % 25 % 〇 〇 ー 〇 × △	

表 3	調合条件と目標強度	度の達成状況
-----	-----------	--------

注)表中の○は目標強度を達成,△は180日超の養生で 目標強度を達成する可能性あり、×は目標強度に達 せず、−は試験未実施を表す.

と表3に示すようになり, CDST10mass%, BFS10mass %であればNaOH水溶液濃度は20%, 25%のいずれでも目 標強度を達成でき, CDSTが30mass%であればNaOH水溶 液濃度が25%の場合に目標強度を達成できることが分かっ

●:石英,△:ムライト,◆:ゼオライト類

図8 圧縮強度が30MPa以上の試験体のX線回折パターン

た.目標強度に達しなかったC10F85B05-25の調合は,養 生期間を延ばすと硬化する可能性があるが本研究で設定し た条件外のため確認していない.

圧縮強度が目標強度に達した3種類の試験体のX線回折 測定結果を図8に示す.いずれの試験体も原料では見られ なかったゼオライト類の回折ピークを検出した.FAのジ オポリマー化に関する既報^{2),16)}においてゼオライト類の生 成が確認されていることから、本研究においてもジオポリ マー化の過程でゼオライト類が生成したと考えられる.

次に電子顕微鏡による破面観察の結果を図9に示す.い ずれも原料粒子の形状が明瞭ではなく,粒子間の隙間が減 少し緻密な組織になっていることが確認された.これはジ オポリマー化により非晶質のゲルが生成することで組織が 緻密化したと考えられ,その結果,圧縮強度が高くなった と推測している. また,再利用物を路盤材等に使用する場合は,環境省の 通知²⁰⁾ により六価クロムの溶出基準を満たす必要がある.

表2に示したCDSTの構成元素にCrが含まれているため、 環境庁告示第46号の付表¹⁰⁾に基づき溶出試験を行ったと ころ、全Cr溶出量は0.02mg/Lとなった.仮に溶出したCr が全て六価クロムであったとしても溶出基準の0.05mg/L よりも低い値であるため、六価クロムに関しては路盤材と しての使用に問題ないことが確認できた.ただし、実際に 使用する場合は、使用する環境に応じて法令に定められた 要件を満たす必要があるため、都度、要求される試験を実 施する必要がある.

4. まとめ

島根県内の鋳造工場で発生するCDSTについて、ジオポ リマー化による路盤材の製造を目的として、アルカリ水溶 液にNaOH水溶液を用い常温で固化体の作製条件を検討し たところ、以下の結果を得た.

- (1) CDSTにFAおよびBFSを混合することにより、ジオ ポリマー化による固化ができる.
- (2) CDSTを原料の30mass%とする場合,FA60mass%およびBFS10mass%の混合率でNaOH水溶液の濃度が25%であれば、目標の圧縮強度30MPaを達成できる。
- (3) CDSTを原料の10mass%とする場合,FA80mass%およびBFS10mass%の混合率とすると,NaOH水溶液の 濃度は20%と25%のいずれでも目標の圧縮強度30 MPaを達成できる.
- (4) 目標強度を達成した試験体はいずれもゼオライトが生成していた.
- (5) 目標強度を達成した試験体の組織は,原料粒子の形状 が明瞭ではなく,粒子間の隙間が減少し緻密な状態で あった.
- (6) 目標強度を達成した試験体の六価クロムの溶出量は, 環境省告示第46号の溶出基準未満であった.

謝 辞

本報告は平成28年度~平成30年度資源循環技術基礎研究 実施事業による研究成果の一部である.実験で使用した CDSTは山建プラント株式会社から,FAは中電環境テク ノス株式会社から提供を受けた.ここに記して謝意を表し ます.

文 献

- 李柱国.ジオポリマーおよびその建材分野における実用化に向けて その1 硬化機構および反応生成物.建材試験情報. 2016, vol.52, no.9, p.2-7.
- Davidovits, J. Geopolymer Chemistry & Applications 4th ed., Institute Geopolymer, 2015, 623p.
- 3) Abdullah, M.M.A. etal. Mechanism and Chemical Reaction of Fly Ash Geopolymer Cement - A Review. International

Journal of Pure and Applied Science and Technology. 2011, vol.6, no.1, p.35-44.

- 4) Obonyo, E. et al. Advancing the use of secondary inputs in geopolymer binders for sustainable cementitious comp osites: A review. Sustainability. 2011, vol.3, p.410-423.
- 5) 一宮一夫.環境負荷低減に寄与するジオポリマーの研究開発 の現状. セラミックス, 2015, vol.50, no.12, p.914-919.
- 6)日本鋳造協会.平成30年銑鉄鋳物都道府県別生産量. https://foundry.jp/foundry2018/wp-content/uploads/2011/ 08/todouhuken-ryo2018.pdf(参照 2019-09-30).
- 7) 日本経済団体連合会."各部門の業種別動向".経団連低炭素社会実行計画 2018年度フォローアップ結果 総括編
 <2017年度実績> [確定版].2019,
 http://www.keidanren.or.jp/policy/2018/101_sokatsu.pdf
 (参照 2019-09-30).
- 8) 細谷俊夫.セメント産業におけるCO₂排出削減の取り組み. コンクリート工学. 2010, vol.48, no.9, p.51-53.
- 9)米倉英史.近藤文義.フライアッシュを用いた低強度ジオポ リマーへの高炉スラグ微粉末の添加による強度向上.農業農 村工学会論文集,2013, no.287, p.79-86.
- 10)環境庁.土壤環境基準(平成3年8月23日環境庁告示第46号).1991.
- https://www.env.go.jp/kijun/dojou.html (参照 2019-09-30).11) 荒川正文. "粒子表面の物理化学的性質".粉体工学の基礎.
- 粉体工学の基礎編集委員会.日刊工業新聞社, 1992, p.59-76.
- 12) Crundwell, F.K. On the Mechanism of the Dissolution of Quartz and Silica in Aqueous Solutions. American Chemical Society Omega. 2017, vol.2, p.1116-1127.
- Brady, P.V.; Walther, J.V. Kinetics of quartz dissolution at low temperatures. Chemical Geology. 1990, vol.82, p.253-264.
- 14) Brady, P.V.; House, W.A. "Surface-controlled dissolution and growth of minerals". In Physics and Chemistry of Mineral Surfaces. Brady, P.V., ed. CRC press, Florida, 1996.
- 15) 高柳猛. セラミック中子用シリカ粉のアルカリ水溶液への溶 解性. 鋳物. 1989, vol.61, no.3, p.163-170.
- 16) 上原元樹,佐藤隆恒,大内悠斗,山崎淳司.フライアッシュ
 を原料としたH+型ジオポリマーの作製とイオン交換特性. 粘土科学. 2014, vol.53, no.1, p.8-15.
- 17) Feng, D. et al. Preparation of Geopolymeric Materials from Special Reference to Binder Products. Journal of Ceramic Society of Japan. 2005, vol.113, no.1, p.82-86.
- 山口ほか.ジオポリマーコンクリート製造技術の開発.長崎
 県窯業技術センター研究報告,2015, no.63, p.21-29.
- 19) 福原ほか.不焼成材料の固化技術の確立.あいち産業科学技 術総合センター研究報告,2016, p.66-69.
- 20)環境省.土壌汚染にかかる環境基準についての一部改正について(平成13年3月28日環水土44号).2001.