資 料

応力解析を活用した平板瓦の高強度化の検討

小松原 聪*·福田 健一*·江木 俊雄**·中島 刷***·清水 一郎****

1.目 的

島根県西部地域は、石州瓦の名称で知られる粘土瓦の生 産地であるが、全国的にも粘土瓦の出荷量は減少傾向にあ る¹⁾.そこで、島根県産業技術センターでは、石州瓦の耐 凍害性と耐塩害性の評価²⁾等による高付加価値化や、熱流 体シミュレーションを活用した乾燥工程改善³⁾等による生 産性の向上を支援している.

一方,粘土瓦は十分な機械的強度を確保するために,あ る程度の厚みが要求され,スレートやガルバリウム鋼板等 の屋根材と比べると重量が大きくなってしまうという問題 がある.この問題に対して,屋根瓦の裏側面に補強リブを 設けることで強度の低下を補う方法⁴¹や陶磁器用原料に熱 硬化性樹脂成形品の粉砕物を添加して焼成する方法⁵¹等が 報告されている.しかし,これらの方法では,リブを形成 するための設計変更及び型変更や破砕物を生成及び添加す る工程が必要となる等,必ずしも既存の設備だけで容易に 対処できるとは限らない.そこで,島根県ほかでは,J形 桟瓦,S形桟瓦等を対象に,裏側面の特定領域に施釉層を 形成するという簡便な手段で強度を向上させることができ ると報告⁶¹しており,この手段では既存の設備に裏側面施 釉工程を加えるだけで対処できる.

本報告では,J形桟瓦,S形桟瓦とは曲げ試験方法が異な るため,効果的な施釉範囲も異なることが予想される平板 瓦(F形瓦)を対象として,裏側面施釉による高強度化に ついて検討した.なお,F型桟瓦の曲げ試験では,荷重位 置とスパン中心がずれているため,応力集中部位が明らか ではない.そこでコンピュータシミュレーションによる応 力解析を行うことで,どこに施釉すべきか検討したので合 わせて報告する.

2.方 法

2.1 ソフトウェア

応力解析を行うためのソフトウェアは、ANSYS Inc.製 の有限要素法解析ソフトウェアであるANSYS Mechanical R17.0を用いた.

(a)円盤の配置図(b)セッティング後の様子図1 F形桟瓦の曲げ試験方法

2.2 モデル形状及び解析条件

図1は今回検討したF形桟瓦の曲げ試験時の(a)円盤 の配置図と(b)セッティング後の様子である.瓦尻側を 桟木上に置き,試験体中央の円盤に均一に載荷することで 曲げ破壊荷重を測定する.部材間には密着や試験体を水平 に支持することを目的とするゴム板が挿入される⁷⁾.そこ で,この試験状況を以下のようにモデル化した.図2に形 状寸法を,図3に境界条件を示す.

- ・曲げ試験の結果から、F形桟瓦は中心近傍で桟木に平行 に破壊することから、瓦頭及び尻側辺に直交する端部形 状の影響は小さいと考え、平板瓦本体を直方体モデルと した.これにより、図1(a)の配置図方向に見て左右対 称の対称モデルを想定し、瓦頭側辺および瓦尻側辺を等 分するように二分割した1/2モデルとした.
- ・尻側の桟木は剛体として取り扱い,上面を全方向及び回 転固定とした.
- ・頭側の前垂れ下端の辺をY方向固定とした.
- ・円盤中心下端及びその直下の瓦本体表面の点をX方向固

^{*}熱・シミュレーション応用技術開発プロジェクトチーム, ***無機材料・資源科, ****無機材料技術科, ****学校法人 加計学園 岡山理科大学

定とした.

- ・瓦本体と桟木及び瓦本体と鋼製円盤間は摩擦無しで接触 するものとした.
- ・部材間へのゴム板の挟み込みや荷重をかける鋼製丸棒は モデル化せず,円盤の姿勢は境界条件として与えた.

以上のモデルを用いて,鋼製円盤は厚み10mmとして,荷 重条件は,県内産F形桟瓦では曲げ破壊荷重が約2000~ 4000Nの値をとることから,静的に-Y方向に2000N荷重 (1/2モデル)することにより,平板瓦にどのような応 力が生じるかについて,応力解析を行った.

なお、図1(b)を参照すると、試験機に接続された丸 棒の端部がゴム板を介して、円盤を瓦に押し付ける際、円 盤の姿勢は完全に拘束されているわけではないし、完全な フリー状態でもない中間的な状態と考えられる.そこで、 円盤の姿勢条件として、図4に示すように、載荷の際に傾 き(回転)の姿勢が拘束された状態(a)と任意の傾きを 許容する非拘束の状態(b)のそれぞれについて検討した. 平板瓦本体の変形は模式的に誇張表示している.

2.3 施釉範囲の検討パラメータと材料物性値

施釉範囲を検討するにあたり,図5に示す3箇所の施釉 の中心位置と施釉幅をパラメータとした.図5は瓦を裏面 から見た図で,円盤を破線で示した.施釉の中心位置は, 尻側-頭側方向における中央(以下,「中央」とする), 中央から尻側に32.5mmの位置(以下,「尻側」とする),中 央から頭側に32.5mmの位置(以下,「頭側」とする)の3 箇所とした.図5に例示している施釉範囲は「尻側」の場 合を示す.施釉幅は,25,45,65,85,105,130,150, 及び195mmとした.釉薬層の厚みは200µmとした.また, 表1に解析に使用した材料物性値を示す.瓦素地,および 釉薬の値については,岡山大学,岡山理科大学の研究結果 を参考とした.

2.4 実証実験

実際のF形桟瓦の曲げ試験にて曲げ破壊荷重を確認した. 施釉の中心位置として,前記の「中央」,「尻側」,「頭側」 の3箇所において,それぞれ,施釉幅を65,105,145, 185,及び225mmとした試験サンプルを準備して,前記F形 桟瓦の曲げ試験により,曲げ破壊荷重を測定した.なお, 用いた平板瓦のサイズは,F形区分40の粘土瓦であり,長 さ350mm,幅345mm,働き寸法における長さaが280mm,幅 bが305mmであった.働き寸法とは,平板瓦を屋根に葺い たとき,他の平板瓦と重ならず外部に露出する領域の寸法 をいう.

3.結果

3.1 シミュレーション

図6に円盤姿勢拘束時の瓦素地の裏面施釉が無い場合の 最大主応力分布を示す.図は裏面から見た図で,平板瓦本 体の部分を半透明に表示してある.応力の最大値発生個所

表1 材料物性值

	ヤング率 (GPa)	ポアソン比
構造用鋼	200	0.3
瓦素地	11	0.24
釉薬	20	0.17

は尻側の円盤端部に対応する部分であることがわかる.こ れは、円盤姿勢を拘束した条件、すなわち、円盤により平 板瓦に荷重をかけている間、円盤の傾きがいずれの方向に もぶれることなく、円盤の荷重平面と荷重方向とが常に垂 直に維持されている条件下では、円盤での荷重中心位置と 平板瓦を支持している桟木と頭側の支持位置との中央点と が合致せず、荷重中心がやや尻側に寄っていることによる ものと考えられる.

図7に円盤姿勢拘束時の施釉範囲と瓦素地の最大主応力

の関係を示す. 横軸に施釉幅を, 縦軸に瓦素地の最大主応 力をとり、施釉の中心位置を「尻側」、「中央」、「頭側」と した. 最大主応力は低い方が, 曲げ破壊荷重が高いことが 予想される.これによると、施釉の中心位置が「尻側」の 場合が最も少ない施釉面積で最大主応力を低減でき,逆に 「頭側」の場合は広範囲に施釉しないと応力を低減できな いことがわかる。これは、「尻側」に施釉することで、よ り少ない施釉面積で応力集中領域をカバーできるためと考 えられる.また、「中央」の場合の施釉幅65mm、「頭側」の 場合の130mmに生じている最大主応力の山の部分は施釉範 囲の端部が尻側にある応力集中部に達したことに対応する と考えられる.施釉範囲の端部ではモデル上,急激に厚み が変化したためであり、後述の実験では再現されなかった. また、それ以上に施釉幅を広げると最大主応力は著しく低 下するが、「中央| 施釉幅85mm以上、「頭側| 施釉幅150mm 以上の範囲では最大主応力の値はほぼ一定値になっており、 応力集中領域をカバーする範囲以上に広げても効果は期待 できない.

図8に円盤姿勢非拘束時の瓦素地の裏側面施釉が無い場 合の最大主応力分布を示す.応力の最大値発生個所は,図 6とは異なり,頭側と尻側の円盤端部に対応する部分の2 箇所であることがわかる.これは,円盤非拘束の条件下で は、円盤が傾くことが可能であるため、頭側にも荷重がか かりやすくなったことによるものと考えられる.

図9に円盤姿勢非拘束時の施釉範囲と瓦素地の最大主応 力の関係を示す.これによると、「中央」の場合が最も少 ない施釉面積で最大主応力を低減できることがわかる.こ れは、「中央」に施釉することで、より効率的に2箇所の応 力集中領域をカバーしたためと考えられる.また、最大主 応力の山の部分は図7と同じ理由と考えることができる. 施釉幅が150mm以上の範囲も図7と同様の傾向が見られる.

3.2 実証実験

図10に実証実験における施釉範囲と曲げ破壊荷重の関係 を示す. 脆性材料では,部材の内部に発生する最大主応力 が材料の強度に達した時,破損を生じることから,前記3.1 に示す最大主応力が低い方が,曲げ破壊荷重が高いため, 図7及び図9と図10では大小を逆にして比較する必要があ る.特に施釉幅が105~150mmにおいて,「尻側」の方が 「頭側」に比べて,曲げ破壊荷重が概ね高く,この関係は 前記3.1における円盤姿勢拘束条件に近い関係である.一 方で,施釉幅が100mm未満の施釉幅が比較的小さい範囲で は,「尻側」よりも「中央」の方が優位となっている.こ れは円盤姿勢非拘束条件に近いとも言える.また,施釉幅 の増大により,最終的に曲げ破壊荷重は一定値以上には向

図6 円盤姿勢拘束時の最大主応力分布

図7 円盤姿勢拘束時の施釉範囲と最大主応力の関係

図8 円盤姿勢非拘束時の最大主応力分布

図9 円盤姿勢非拘束時の施釉範囲と最大主応力の関係

図10 実証実験における施釉範囲と曲げ破壊荷重の関係

上せず,シミュレーションと同様の傾向を示している.以上,平板瓦は裏面側の特定の一部領域にのみ施釉層を形成 することで,裏側面施釉が無い対照品に比べて,曲げ破壊 荷重が1.5倍以上になることが確認できた.

3.3 まとめ

平板瓦(F形瓦)を対象として,裏面施釉による,高強 度化について検討した.施釉領域は,施釉の中心位置と施 釉幅をパラメータとした.以下に,本検討で得られた知見 を示す.

1)シミュレーションにより,応力集中部を把握するとと もに,その部分を包含する領域に施釉層を形成することで, 最大主応力を低減できることがわかった.

2)実証実験により,平板瓦は裏面側の特定の一部領域に のみ施釉層を形成することで,裏側面施釉が無い対照品に 比べて,曲げ破壊荷重が1.5倍以上になることが確認でき た.この結果,平板瓦の厚みを薄くすることで軽量化して も,十分な強度を維持することが期待される.

謝

文

辞

本報告は平成27,28年度しまねものづくり高度化支援事 業による研究成果の一部である. 試験に使用した平板瓦 は石央セラミックス協同組合から提供を受けました.ここ に記して謝意を表します.

献

 全国陶器瓦工業組合連合会 粘土瓦の出荷推移と新築住宅着 工戸数(平成28年版)

http://www.zentouren.or.jp/tokei/toimg/Zentoren_2.pdf

- 2) 中島剛,前原清霞,高橋青磁,原田達也,江木俊雄,石州瓦と 比較した外国産瓦の耐凍害性と耐塩害性.島根県産業技術セ ンター研究報告. 2013, no. 49, p. 13-19.
- 3)小松原聡,福田健一,江木俊雄,原田達也.熱流体シミュレーションを活用した瓦乾燥炉の改善事例.島根県産業技術センター研究報告.2014, no. 50, p. 31-35.
- 4)株式会社建材テクノ研究所.屋根瓦.特開平10-325215.1998-12-8.
- 5) アイカ工業株式会社,三州フリット株式会社,有限会社鈴幸. 高強度軽量陶磁器製品.特開2003-342057.2003-12-3.
- 6) 島根県,学校法人加計学園,石州瓦工業組合.粘土焼成建材. 特開2017-101523. 2017-6-8.
- 7) JIS A 5208:1996. 粘土がわら